Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors.
نویسندگان
چکیده
Novel nanomaterials for bioassay applications represent a rapidly progressing field of nanotechnology and nanobiotechnology. Here, we present an exploration of single-walled carbon nanotubes as a platform for investigating surface-protein and protein-protein binding and developing highly specific electronic biomolecule detectors. Nonspecific binding on nanotubes, a phenomenon found with a wide range of proteins, is overcome by immobilization of polyethylene oxide chains. A general approach is then advanced to enable the selective recognition and binding of target proteins by conjugation of their specific receptors to polyethylene oxide-functionalized nanotubes. This scheme, combined with the sensitivity of nanotube electronic devices, enables highly specific electronic sensors for detecting clinically important biomolecules such as antibodies associated with human autoimmune diseases.
منابع مشابه
Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.
We have created stable dispersions of single wall carbon nanotubes (SWNTs) in water by employing a noncovalent functionalization scheme that allows carboxylic acid moieties to be attached to the SWNT surface by a pi-pi stacking interaction. Pyrenecarboxylic acid (PCA) is noncovalently attached to the surface of SWNTs and affords highly uniform and stable aqueous dispersions. This method was dev...
متن کاملNoncovalent functionalization of DNA-wrapped single-walled carbon nanotubes with platinum-based DNA cross-linkers.
A method for noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes (SWNTs) using platinum-based DNA cross-linkers is investigated. In particular, cisplatin and potassium tetrachloroplatinate are shown to bind to DNA that encapsulates SWNTs in aqueous solution. The bound platinum salt can then be reduced to decorate the DNA-encapsulated SWNTs with platinum nanoparticles. Th...
متن کاملNoncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression.
A kind of concanavalin A functionalized multiwalled carbon nanotube (ConA-MWCNT) was constructed by noncovalent assembly of ConA on carboxylated MWCNT with poly(diallyldimethylammonium) as a linker. The novel nanomaterial was characterized with scanning electron microscopy and atomic force microscopy. It incorporated both the specific recognition ability of lectin for cell-surface mannosyl grou...
متن کاملHigh mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization.
Noncovalent functionalization is a well-known nondestructive process for property engineering of carbon nanostructures, including carbon nanotubes and graphene. However, it is not clear to what extend the extraordinary electrical properties of these carbon materials can be preserved during the process. Here, we demonstrated that noncovalent functionalization can indeed delivery graphene field-e...
متن کاملNanowire-Based Electrochemical Biosensors
We review recent advances in biosensors based on one-dimensional (1-D) nanostructure field-effect transistors (FET). Specifically, we address the fabrication, functionalization, assembly/alignment and sensing applications of FET based on carbon nanotubes, silicon nanowires and conducting polymer nanowires. The advantages and disadvantages of various fabrication, functionalization, and assemblin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 9 شماره
صفحات -
تاریخ انتشار 2003